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The experiments of McDonald and his co-workers (McDonald, 1952, 1955;
Helps & McDonald, 1953) have shown that in the larger arteries of the rabbit
and the dog there is a reversal of the flow. Measurements of the pressure
gradient (Helps & McDonald, 1953) showed a phase-lag between pressure
gradient and flow somewhat analogous with the phase-lag between voltage
and current in a conductor carrying alternating current, and the simple
mathematical treatment given below has strong similarities with the theory
of the distribution of alternating current in a conductor of finite size.

Solution of the equation of motion
We consider a circular pipe of length 1, radius R, filled with a viscous liquid

of density p and viscosity ,u. We shall need also the quantity v=,up, the
kinematic viscosity. To clarify what is to follow, the solution will be compared
at each stage with the corresponding well-known Poiseuille solution for steady
flow.

In steady flow, if Pi and P2 are the pressures at the ends of the pipe, the
pressure-gradient is (P1-P2)/l.

If w is the longitudinal velocity of the liquid at points at a distance r from
the axis of the pipe, the equation of motion of the liquid is

d2w +1dw Pr-P2=0
dr2+r dr+ /1td-'1

and its solution is W=Pl4P2 (R2 -r2)

which, if we write y = r/R, may be written

w =P1 _P2 R2(1 - y2). (2)4tkd



If now the pressure-gradient (Pl- P2)/! is not constant, equation (1) has a term

- ot on the right-hand side. We consider a pressure gradient
Pl-P2=Aeint (3)

1

which is periodic in the time with a frequency
f= n/27r,

since the pulse is a periodic phenomenon, and any function which is periodic
in the time can be expressed as the sum of a series of terms of this form. The
equation of motion becomes

a2w 113w law_Aar2+r v--,ieint, (4)
ar2 r Or v At ,uk

and if we now write
w=ueint (5)

where u is a function of r alone, the equation for u is

d2u ldu in Adr+___ -U. (6)dr2 r dr v

If we write this equation in the form

d2u 1 du i3n -A
2+ jr+- (7)dr r dr v ,uk

(remembering that - 1=i2), its solution may be written

A 1 _Jo v

where Jo(xif) is a Bessel function of order zero and complex argument which
is well known and arises in problems connected with the distribution of
current in conductors of finite size. The quantity R J(n/v) is a non-dimen-
sional parameter. We shall write

RJ~~
v

If we also write r/R= y, then the velocity is given by

.p in Jo(ocji) (9)

This is still in complex form. If now we were to take as pressure gradient the
real part of A eint, the corresponding flow would be the real part of (9).
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CALCULATION OF ARTERIAL FLOW
A formula, essentially the same as the real part of (9) when A is real, was

derived by Lambossy (1952) who also gave a form for the viscous drag, by
separating Jo(ociI) into its real and imaginary parts. The conventional separa-
tion into real and imaginary parts leads to a very clumsy form for the results,
and it is more convenient to express the results in terms of modulus and phase.

Tables of Jo(xii) are available in the form

Jo(xi) =Mo(x) eiOo(x),
where Mo and 60 both vary with x, and by using these we are led at once to the
amplitude and phase of the motion.
We write

Jo(ayil) = Mo(y) ei0o(v),} (10)
Jo(cil) =Mo ei0o. I

Then if the real part of A eint is M cos (nt +0) the corresponding velocity is

W=M- (sin (nt+o)- sYin (nt+ -8°) (11)

where 80= 00-o(y). (12)

Tables of Mo(y) and 0o(y) are given by McLachlan (1941), and in a slightly
different form by Jahnke & Emde (1938).

Equation (11) may be put in terms of a single phase-relationship, more
suitable for calculation. If we write

h oM(y) (13)
and define MO and Eo by the following

M'=4V(1 +ho-2ho cos 80), (14)

tanEo=-ho sin ' (15)

then w=-- Mo sin (nt+++Eo). (16)
p n

To compare this with the steady-flow result, we use the relation c = RV(nlv),
and in (16) write

1 1 R2 p R2

Then --=-- and the expression for w becomes
n p {x-C

W=-M2 Mt sin (nt ++Eo). (17)MR

The quantity MI/oc2 takes the place of 1(1 -y2) in the formula for steady flow
(equation (2)). It must also be noted that c0 varies with y, and therefore the
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phase varies across the pipe. The degree of departure from the normal
parabolic form increases with a, i.e. with the frequency. The effect has a
certain similarity with the 'skin effect' in electrical conductors, but the
analogy cannot be pressed too closely because of the difference in surface
conditions.
The rate of flow, i.e. the quantity of liquid passing through any cross-

section per unit time, is given by
R

Q = 2 wrdr. (18)

Writing y =r/R this becomes

Q = 2TR2fwydy- (19)

For steady flow W=P1P2R2 2)

and Q=P1-P2%7R44'(1 y2) 2ydy=PIP2l1TR4, (20)
4pl J0 81id

which is Poiseuille's formula. If in (19) we substitute for w its value from
(9) we have

Qp={TA J(oRi) ooyi)ydy eint. (21)
p in 2 J(xl

Now JXJO(x) dx= xJ,(x) from known properties of Bessel functions and

therefore =R2 A ( 2ocif J1(Ocil) *
Q 3i-- ei(Oj t. (22)

Writing this again in terms of modulus and phase, if

J1(ocii) = Mle1l,
we may write (22) in the form

Q=ITRM{8in (nt+k)-2 isin(nt+k aiO)} (23)

where S10= 135°-0 + 0. (24)

Tables of M1 and 01 are given by McLachlan (1941), but a more convenient
table is available in Jahnke & Emde (1938). Jahnke & Emde give a table of
cM0/2M1 and also of what they call

go-1= -FT-810.
It should be pointed out that this table (of go-,B) is tabulated in decimals of
a right-angle. To convert these values to degrees the tabular values should be
multiplied by 90.

556 J. R. WOMERSLEY



CALCULATION OF ARTERIAL FLOW
In the same way as for the velocity, the formula for the rate of flow may be

reduced to a single-phase relationship. Since aMO/2M1 is tabulated we write
ocMO/2M1 = k. Then, in the same manner as before, defining

MI?= k sin2 810 + (k-cos 8o)2],

and tan e = sinc-o00k- cos 80
we have Q=R4M 2 sin (nt+,b+E10). (25)

The viscous drag on a cylinder of radius r is

dw
F = -2Xr dr-'

and since dd[Jo(x)] -J1(x)

this can be expressed in terms of M1, MO, 01 and 00. Following exactly the
same method as before, it reduces to

F =7M 2 ayOY) cos {nt+ -81(Y)}

where 81(y) = 1350 - 01(Y) + 00.
At r = R, where F is a maximum, the drag at the surface of the pipe is

Fmax = TMR2 2M1 cos {nt+ 81o}. (26)

Numerical calculation of rate offlow from observed pressure gradient
McDonald (1955) obtained the pressure gradients corresponding to his

average velocity measurements by direct difference between the readings of
two manometers. One of his curves for the pressure gradient in the femoral
artery of the dog is shown in Fig. 1.
The first step in the calculation of the corresponding rate of flow is to

represent this pressure gradient as a Fourier series. If T is the pulse-time
t

(in this case 1 sec) we write x = 27r T so that x, measured in degrees, runs from

zero to 3600 during one pulse period. The coefficients of the Fourier series
were computed by direct summation, twenty-four ordinates being taken,
15° apart. The coefficients up to the sixth harmonic are shown in
Table 1.

These were next converted to modulus and phase form, the results being
given in the two right-hand columns.
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The corresponding flow will be the sum of six terms of the form

rrMR4 Mj'Q= MR 2 sin (mx+ b+e10), (27)

where m has the values 1, 2, ..., 6.

TABLE 1. Fourier components of pressure-gradient curve shown in Fig. 1

m cosine term sine term Mm qbm
1 +0-8781 -0-7432 +1-1050 +400 14'
2 +0-5415 +1-4327 +1-5316 -690 17'
3 - 0-7946 + 0 5508 - 0 9668 + 340 44'
4 -0 2375 - 0-1588 - 0*2857 - 330 47'
5 +0-0125 -0-2818 +0-2821 +870 31'
6 -0-1917 - 0-0167 - 0-1924 - 40 58'

The second step is the calculation of the value of oc for each harmonic, and
the corresponding values of M'o and c. The following figures have been used:
diameter of artery, 2R = 03 cm; viscosity, j = 0-04P; density, p = 1-05 g/ml.;
pulse frequency, f= 3 per sec. Hence n = 67T sec-' for the fundamental, and

OC=-0-15 /6-rTx 1-05 =3374) - 0 04

The values of cx for the higher harmonics are obtained from this by simple
multiplication. The corresponding values of M'o and E10 can be read from
Table 3, which can be interpolated by proportional parts. It covers the values
of a from a=0 to o =10. For values of c> 10 the author has derived the
following asymptotic expressions:

Ml0 1 1_2 1
_22 _+_4 (28)

Elo (degrees) .57-296 ( +2+24123) (29)

Table 2 gives the values of X required for the pressure-gradient curve shown
in Fig. 1 together with the corresponding values of M'o andE.
As pressures are normally measured in mm Hg, the conversion factor to

dyne/cm2 is included in the constant 7TR4/t, which then becomes 53 05 for this
example. The expression for Q is

Q= 3.56 sin (x+ 71° 13')
+ 2-71 sin (2x-49° 10')
-1-20 sin (3x+ 50° 33')
-0'28 sin (4x-20° 17')
+0-22 sin (5x+ 990 28')
-0-13 sin (6x+5° 47').
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CALCULATION OF ARTERIAL FLOW
This has been plotted on Fig. 1 to show its phase-relationship to the pressure.

The agreement with the rate of flow deduced from direct observations of the
average velocity is not perfect, but, as will be seen from the results of similar
calculations shown in McDonald's paper (1955), it is surprisingly good when

TABLE 2. Values of a, M0o and elo for the Fourier components of the pressure-gradient
curve shown in Fig. 1

m a a2 M1o Ci0
1 3-34 11-13 0-6551 300 59'
2 4-72 22-27 0-7436 190 57'
3 5-78 33 40 0-7839 150 49'
4 6-67 44-53 0-8096 130 30'
5 7-46 55-67 0-8278 110 57'
6 8-17 66-80 0-8416 100 45'

1

Fig. 1. Relation of flow (Q) to the pressure gradient (P) in the femoral artery of a dog. The
equations for the curves are given in the text. The flow curve does not include the steady
flow term.

it is recalled that the pressure determination was not made at the same time
as the velocity determinations. Moreover, the plotting of the pressure-
gradient curve by taking small differences between separate pressure deter-
minations is subject to error.

The above method of setting out the calculation is the most suitable for
demonstrating the way in which the components of the pressure gradient
have to be modified, in amplitude and phase, to obtain the corresponding rate
of flow. If the calculation is to be made as a routine, it is quicker to work in
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TABLE 3. MXI/a2 and clo tabulated for values of a from 0 to 10.
I

ZVOI 2Ec10

0-00 0-1250 90-00
-05 *1250 89-98
*10 *1250 89-90
*15 -1250 89-79
-20 -1250 89-62

0-25 0-1250 89-40
*30 *1250 89-14
-35 *1250 88-83
*40 *1250 88-47
*45 -1249 88-07

0-50 0-1249 87-61
-55 *1248 87-11
*60 *1248 86-57
-65 -1247 85-97
-70 -1246 85-33

0-75 0-1244 84-65
-80 -1243 83-91
-85 *1240 83-14
-90 -1238 82-32
-95 -1235 81-45

1-00 0-1232 80-55
1-05 -1228 79-60
1-10 -1224 78-61
1-15 -1219 77-59
1-20 -1213 76-53

1-25 0-1207 75-44
1-30 -1200 74-31
1-35 -1193 73-16
1-40 -1185 71-98
1-45 -1176 70-77

1-50 0-1166 69-54
1-55 -1156 68-30
1-60 -1144 67-03
1-65 -1133 65-76
1-70 -1120 64-47

1-75 0-1107 63-18
1-80 -1093 61-89
1-85 -1078 60-59
1-90 -1063 59-30
1-95 -1047 58-02

2-00 0-1031 56-74
2-05 -1015 55-47
2-10 -0998 54-22
2-15 -0980 52-98
2-20 -0963 51-77

2-25 0-0945 50-57
2-30 -0927 49-39
2-35 -0909 48-24
2-40 -0891 47-11
2-45 -0873 46-01

2-50 0-0855 44-93

a M10/12 e10

2-50 0-0855 44-93
2-55 -0837 43-88
2-60 -0819 42-86
2-65 -0802 41-86
2-70 -0784 40-90

2-75 0-0767 39-96
2-80 -0750 39-05
2-85 -0734 38-17
2-90 -0717 37-32
2-95 -0701 36-50

3-00 0-0685 35-70
3-05 -0670 34-93
3-10 -0655 34-18
3-15 -0640 33-46
3-20 -0626 32-77

3-25 0-0612 32-09
3-30 -0598 31-45
3-35 -0585 30-82
3-40 -0572 30-22
3-45 -0559 29-64

3-50 0-0547 29-08
3-55 -0535 28-53
3-60 -0523 28-01
3-65 -0512 27-51
3-70 -0501 27-02

3-75 0-0490 26-55
3-80 -0480 26-10
3-85 -0470 25-66
3-90 -0460 25-24
3-95 -0451 24-83

4-00 0-0441 24-43
4-05 -0432 24-05
4-10 -0424 23-68
4-15 -0415 23-32
4-20 -0407 22-98

4-25 0-0399 22-64
4-30 -0391 22-32
4-35 -0384 22-00
4-40 -0376 21-70
4-45 -0369 21-40

4-50 0-0362 21-11
4-55 -0355 20-84
4-60 -0349 20-56
4-65 -0342 20-30
4-70 -0336 20-05

4-75 0-0330 19-80
4-80 -0324 19-55
4-85 -0319 19-32
4-90 -0313 19-09
4-95 -0308 18-86

5-00 0-0302 18-65

a M'O/a2 'El
5-00 0-0302 18-65
5-05 -0297 18-43
5-10 -0292 18-23
5-15 -0287 18-02
5-20 -0282 17-83

5-25 0-0278 17-63
5-30 -0273 17-44
5-35 -0269 17-26
5-40 -0264 17-08
5-45 -0260 16-90

5-50 0-0256 16-73
5-55 -0252 16-56
5-60 -0248 16-39
5-65 -0244 16-23
5-70 -0240 16-07

5-75 0-0237 15-91
5-80 -0233 15-76
5-85 -0230 15-61
5-90 -0226 15-46
5-95 -0223 15-32

6-00 0-0220 15-18
6-05 -0216 15-04
6-10 -0213 14-90
6-15 -0210 14-77
6-20 -0207 14-63

6-25 0-0204 14-50
6-30 -0201 14-38
6-35 -0199 14-25
6-40 -0196 14-13
6-45 -0193 14-01

6-50 0-0191 13-89
6-55 -0188 13-77
6-60 -0185 13-66
6-65 -0183 13-54
6-70 -0181 13-43

6-75 0-0178 13-32
6-80 -0176 13-21
6-85 -0173 13-11
6-90 -0171 13-00
6-95 -0169 12-90

7-00 0-0167 12-80
7-05 -0165 12-70
7-10 -0163 12-60
7-15 -0161 12-50
7-20 -0159 12-41

7-25 0-0157 12-31
7-30 -0155 12-22
7-35 -0153 12-13
7-40 -0151 12-04
7-45 -0149 11-95

7-50 0-0147 11-87

a M1/012 C1I
7-50 0-0147 11-87
7-55 -0146 11-78
7-60 -0144 11-70
7-65 -0142 11-61
7-70 -0140 11-53

7-75 0-0139 11-45
7-80 -0137 11-37
7-85 -0136 11-29
7-90 -0134 11-21
7-95 -0133 11-14

8-00 0-0131 11-06
8-05 -0130 10-98
8-10 -0128 10-91
8-15 -0127 10-84
8-20 -0125 10-77

8-25 0-0124 10-70
8-30 -0122 10-63
8-35 -0121 10-56
8-40 -0120 10-49
8-45 -0119 10-42

8-50 0-0117 10-36
8-55 -0116 10-29
8-60 -0115 10-22
8-65 -0114 10-16
8-70 -0112 10-10

8-75 0-0111 10-04
8-80 -0110 9-97
8-85 -0109 9-91
8-90 -0108 9-85
8-95 -0107 9-79

9-00 0-0106 9-73
9-05 -0104 9-68
9-10 -0103 9-62
9-15 -0102 9-56
9-20 -0101 9-51

9-25 0-0100 9-45
9-30 -0099 9-40
9-35 -0098 9-34
9-40 -0097 9-29
9-45 -0096 9-24

9-50 0-0096 9-18
9-55 -0095 9-13
9-60 -0094 9-08
9-65 -0093 9-03
9-70 -0092 8-98

9-75 0-0091 8-93
9-80 -0090 8-88
9-85 -0089 8-84
9-90 -0088 8-79
9-95 -0088 8-74

10-00 0-0087 8-69
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CALCULATION OF ARTERIAL FLOW
terms of the usual Fourier coefficients. Thus, if we write for the mth component
of the pressure gradient

Am cos mx+Bm sin mx.
Am=Mm Cos Om, -Bm=Mm sinm,

and if we expand (27) it becomes

_ M10 (Am sin Elo-Bm cos E10) cos mx

+ (Am cos elo + Bm cos clo) sin mx, (30)

and this is the form recommended for use.
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Fig. 2. The effect of changes in the non-dimensional constant M on: (A) the ratio of the maximum
flow due to a given oscillating pressure to the corresponding steady, or Poiseuille, flow; and
(B) the phase lag between the oscillating pressure and the flow generated.

It is appropriate at this point to consider how M'0 and E10 vary as a changes.
Fig. 2 gives a graphical indication of this. The lower curve (B) is a graph of the
phase lag (i.e. of 90°-Elo) against oc. The phase lag tends to zero with frequency,
as would be expected, but moves very slowly towards its asymptotic value of
900 at high values of a.
The upper curve shows the ratio of the maximum of the oscillatory flow to

the Poiseuille flow for the same pressure gradient. This is obtained by dividing

(27) by
M

, and taking the maximum value, i.e. putting
sin (mx + m+ Eo)=1.

Then

bu'
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This gives Qmax 8Mo(
Qsteady °2

and it is this ratio which is plotted. As cx - 0, M0o --o2 so that M/o/&2 -8
and the flow at small values of oc is the same as given by Poiseuille's formula.
Above cx=1 it falls off sharply, until at a= 10 it is only about one-fifteenth of
the corresponding Poiseuille flow. It will be seen also from this curve that
the values of oc which are used in the calculation of flow in the femoral artery
fall in the range in which the variation with oc is greatest.

This wide variation in the maximum rate of flow for different values of
oc raises the question: how much is oc likely to vary in different animals? Taking
the diameter of the human femoral artery as 0 5 cm, the pulse rate as 72 per
min, and the same viscosity as for the dog,

0=0254 60X05=3.52.

The corresponding values of oc for the rabbit and the cat have also been
calculated, and are of about the same magnitude. This indicates kinematical
similarity in arterial flow in all these animals, and shows that the fluctuating
flow in the great arteries in these experimental animals and in man has the
same form, and differs only in scale.

The nature of the approximations and the possibility of
measurement in living subjects

The simple theory outlined above contains two very drastic assumptions-
the artery is regarded as a rigid tube, arterial expansion being neglected, and
the pressure gradient is assumed to be a function of the time only, whereas it
is generated by a pulse wave of finite velocity.
To a first approximation consider the pulse wave to be a wave travelling

without distortion with velocity c. Then the pressure will have the form

p=po+f(t--)

where z is distance along the artery. The first point to be observed is that in
these circumstances p _ 1 ,

9z c at'
and therefore a good approximation to the pressure gradient over a short
length of artery would be obtained by measuring the time derivative of the
pressure at that point. An electricalmanometer fitted with a time-differentiating
input thus provides a direct record of the pressure gradient; and, if required, the
flow at any point in the larger arteries of a human subject could be predicted,
provided that the pulse could be observed at that point and the pulse-wave
velocity were known. This procedure has been adopted by McDonald (1955).
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CALCULATION OF ARTERIAL FLOW 563

If a complete analysis is attempted, taking into account the finite velocity
of the pressure wave, the single equation (4) is no longer adequate, since there
will be a radial component of velocity as well as a longitudinal one. It is true,
however, that so long as the maximum velocity of the liquid is a small
fraction of the wave velocity, the approximation is reasonably good.
A more detailed study of the more general equations is in preparation. It

has been found that it is possible to consider this question, and that of arterial
expansion, together, as parts of one general problem.

Note on the computation of Fourier components
Iff(x) is a periodic function defined at 24 equally spaced points (i.e. 150 apart if the full period

is taken as 3600) with observed values f,, r=0, 1, 2, ..., 23, then
m=12 m=12

f(x) =AO + 2 Am cos mx+ B,,, in mx,
1~~~1=1=

r=23
where Ao=#- fr,

r=O
r=23

A=-A , fr cos mr x 15°,
r=O
r=23

Bm=-j12 E fr sin mr x 15°;
r=O

and the modulus and phase are Mm=V(A2 +B?2,
m= - tan-' Bm/Am.

SUMMARY

1. An exact solution of the equations of viscous fluid motion is given for
the motion of a liquid in a circular tube under a pressure gradient which is
a periodic function of the time. It is shown that there is a phase-lag between
the motion of the liquid and the pressure gradient which causes it. Formulae
are also given for the rate of flow and the viscous drag.

2. The calculation of the rate of flow from an observed pressure gradient is
described, and tables are given to facilitate the calculation.
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